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A wind-tunnel Investigation was conducted t o  determine the  rotary 
s t ab i l i t y  characteristics i n  yawfng flow of a series of untapred wings 
hirving e e s  of sweep of -450, oO, 450, and 60°. The curved<lou 
e q u i p n t  of the Langley stabil i ty  tunnel was used for the  greater part 
of the  teste.  For campasison purpose8, a f ree-osci l la t im m t h d  w a a  
used t o  obtain the damping in yaw far the  8- wings. At low l i f t  and 
moderate liFt coefficients, results obtalne& by these two  methods were 
i n  fair agreemnt. At high lift coefficients, however, consistent 
values of' the damping in yaw could  not be obtained f a  the swept  wing8 
by the  oscillation method used. 

The results of the yawing-flow tests indicated that the values of . the  rotary  derivativee agreed f a i r l y  vell with simple sweep themy for 
8 moderate range of lift coefficients. Fclr this range of l i f t  coef- 
f icients,  the values of the damping in  y a w  became more negative and 

lift coefficient,  while  those of the la teral   farce due t o  yewing were 
small i n  mapitude. Near mashum l i f t  coefficient the values of the 
damping i n  yaw and the lateral force due t o  yawing became m e  positive 
far the sweptback wings and mare n e s t i v e  far the  sweptforxard wing. 
The rolling mcmsnt due t o  yawing,  however, sQwed opposite  tendencies; 
namely, the values far the sweptf arward wing became highly positive 
while those for the sweptback wings changed sign and became negative 
near maximum l i f t  coefficient. 

- those of the rolling mament due t o  yawing m e  positive  with increasing 

A systematic  investigation is being conducted a t  the Langley 
s tabi l i ty   tunnel  t o  determine the rotary stabil i ty  chasacterist ice 
of' various airplane winge and conxplete airDlane configu&ions. For 
the most part, the  measurements m e  being made by means of the rolling- 
flow and curved-flow techniqus in wMch the model Is held statiunary 
while  the air stream is &e to roll or curve ::bout t h e  mdel. Thie 
technique makes it posslble t o  obtain certain rotaxy derfvativas which 
have cot been obtained. experimntally heretafare. 3esults on t h e  static - 



stability end rol l fng characteristic8 far a series of .ewept  wines and 
far a complete airplane configuration  have  been presented in references'l 
and 2, reepectively. The present repart gives the results of a prelimi- 
nary investigation of the rotmy derivatives in y a w i n g  flow for  the 

eerie8 of swept wings as  reported  in  reference 1. 

samj tests of the 8- winge were made by means of t h e  free- 
oscillation  technique of reference 3 for comparison with the  curved- 
flow r e a t e .  

The d&ta m e  presented in the form & standard N Z A  coefficients 
of forces and moments  which are  referred in all cases to  the  stability 
axes, with the origin at  the qu8,rte-hm-d  point of' the mean geometric 
chord of the modela tested. The positive  directions of the forces, 
mcnnents, and angular displacements are shown in fimre 1. The coef- 
ficients and apdols  used herein 
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cwrvature and velocity grLsdienL &.re obtained by curvfng t h e  flexible 
wall~l of the  tunnel and by inserting, upstream of the model, screem 
made up  of parallel wires with variable spacing. (See fig. 2. ) The 
w*es axe diekibuted i n  such e msxrxr that energy is removed from t he  
air stream at am Increasing rate as the  radius of the atream decreases. 

The o w e d  flow does not repu.oduce exactly the  conditions of an 
airplane  f lying in a curved path, since there i a  a l a t e ra l  diatic- 
pressure gradient  inevitably associated with the cent;rifu@ force 
of a curved stream. The static-pressure gradient cause8 a lateral 
buoyancy and perhaps 901210 la teral  flow within the bour,dary layer on 
the  d e l .  A fe;trlg reliable carrection can be made fur this buoyancy 
farce,  but the effects  of the flaw in the boundary layer c m m t  be 
evaluated accurately at tae present the. Tn addition t o  the preeaure 
gradient c3med by the  curvature,  the wire screens can be expected to 
cause a turbulence gradient across the tunnel, t he  effects of whfch 
c m o %  yet be accurately evalwted. Studfee of aerodynamic character- 
istics in straight flaw have shown thet at least a t  low lift coeffictents, 
the effects of turbulence and flow in  the boundary layer &re u~ually 
re lat ively small. It is  believed t h a t  these e f fec ts  would a l s o  be of 
l i+, t le  importance in the determination of‘ the r o b y  dtll*ive.tives 
possibly at h i g h  l i f t  coefficients. 

The models tested  consisted of four untapered wings of approxf- 
mately the 8- area, all of which  had equal cllmds (10 in.) and 
EACA 0012 section8 in planeo normal to the leading edge. (%e fig. 3.) 
These wings are the ones w e d  i n  the tests of reference 1. The wings 
had sweep angles of‘ -k50t Oo, 450r and 60°, and the corraeponding 
aspect  ratios ware 2.61, 5.16, 2.61, and 1.34,reepectively. The mdele 
were r igidly mounted at the quarrter-chord point of the man geometric 
chord on a single strut. (See f ig .  4.) The moments were rmasured by 
a etrebi- m-nt unit mounted at  the top of the support strut. 
The farces were rueEeured by s t r a in  gwes mounted on the strut below 
the monaent unit. Thi~ arrangement neceeeitated mFlMllg cut-outs in 
the ~ g s  i n  crrder to eccommodate the  moment unit. Such cut”0Uts haa 
not been required far the tests repmted  in reference 1. It was 
necessaxy t o  provide a al ight  clearance between the moment unit and 
t he  wing, which resulted in air le&age for all except the unswept 
w i n g  fcr which the cut-out was covered with a sealed fa i r lng  at the 
top Burface of the wing . 

. 

All tests were run at a dynamic preseure of 24.9 pounds per square 
foot which cctrrespmds to a Mach nurnber  of 0.13. The t e s t  Re3;nolds 
number8 based on tlm mean 6econetric chord of the  models are: 



The yauin@lov t e s t s  were mede at constant eideslip ctnd at four 
different wall curvatures correapmding t o  the values of rb/W Shawn 
in the f ollarlng table: 

-45 0, -0.0316, -0.0670, -0.0883 

0 

45 

0, 4.0442, -0.0937, -0.1234 

0, -0.0229, -0.0485; 4.0639 60 

0, -0.0316, -0.0670, -0.0883 
I 

- 

For each rb/28, each m o d e l  was tested through an angle-of+xt%ack 
range from approaimately zero lift up to and beyond mximum l i f t  . All 
the models were tested at a given tunnel-uall curvature befcrre resetting 
the walls. This necessitated  the remal and remounting of the madele 
far eaoh t u n n e l 4  curvature. 

For comparison puTpoBes, the f”oecillation msthod and procedure 
of reference 3 were u e d  to obtain  the damping in yaw C for the B a W  

W a s  nr 

coRREm1om 

The following corrections for jet-boutldary effects and lateral 
static-pressure gradient wer0 applied to the data: 
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where 

% boundary+arrection factor obtained *an reference 4 

C tunnel cross-section  area 

c uncorrected rollin-nt coefficient 
I t  

K correction  factar f'rom reference 5 modified far appl icat ion  to  
the88 tes te  

V volums of model 

The data have not been carrected far the  effects aP blocking, 
eupport-etrut  teses, ar far m y  effects of tnrbulenoe QF static- 
presaure gradient on the bounda.ry-layer flow. 

RESULTS AI?D DISCUSSXW 

L i f t  Characteristics 

The l i f t  chasacteristica of the  w i n g s  under the  conditions of the 
present tests are presented in ffgure 5.  These chmacteri8tlcs m e  very 
neesly the  a m  as those presented in reference 1 except at high angles 
of atteck. The differences mey be accounted far by the wing cut-outs, 

tunnel c x . 0 ~ ~ 1  section. 
. the difference In suppcfft"etrut interference, and. the difference in 

Yawing Chaxacterietics 

Basic data.- Plot8 of the laterakforce,  pwing-momsnt, and rolling- 
m a m e n %  ooefficients inet the lateral flight-path  curvature rb/2V are 
preeented in f i g u r e s 7 t o  9. No data a m  presented far the l i f t ,  drag, 
and pitchin-nt coefficients  since no consistent Pariatione in these 
coefficients with rb/W could be determined. The data presented in 
figures 6 t o  9 have in  all c a m e  been faired b: straight  l ines which are 
considered t o  represent the beet everage of the t e s t  goints. In general, 
the data seem t o  indicate no consistent  deviatlms from lineazity over 
the test range aP rb/2V. The t e s t  point8 show a certain amount of random 
scatter from lhewity, but this 18 believed t o  be caused by certain 
errors inherent in  t h e  t e s t  procedure which requi-red a separate t e s t  run 
f o r  each angle of attack and sach curvature. 



. 

. 
a erivativeQ.- An unpublished  applicaticm of simple m e  

aCZr/% do not m y  with sweep angle. The lateral-force  derivative c 

however, is a function of both sveep angle an& the aspect r a t i o  and 

may be expressed by the following equation: 

them:  g;c%ies tha t  far constant  geometric aspect r a t i o  

yr ' 

-A 
= CL2 (*) tm 

In figure 10 the miaticm acp C, with lift coefficient determined r 
f r o m  the yawinHlow t e s t s  is compared with the thearetical  variation. 
The magnitudes of thie derivative a r e  'so ma21 that they are probably of 
very l i t t l e   s ign i f f came ,  but t 5 e  experimental data ahow the same general 
trends at low lift coefficients a8 the thecwetica c m e e .  There is a 
negative displacment of the experimntal poirrt;s froanthe t h e m t i c a l  
values, which is probably caused by an l n c q l e t e  uarrectian for the 
la%eral st%ttio-gressure gradlent. In the case of the eweptbaok wings 
there is a sudden departure from the general t r end  at about the lift 
coefficient at w h k h  the lift-curve slope suddenly increases, (See 
fig. 3) N e a r  maxjmum lift the values of Cyr of the sweptfcxwmd dng 
became m e  negative;  those of the sweptback w i n s  became mare positive; 
while those of t h e  unswept Xing rmahed about the sme. 

the 
of 
the 

Thearetical vduea of aC were obtained by exlzapolating 

d a t a  af reference 6 to low aspect  ratios md uelng theoretical  values 

CLa . The effects of' the profile drag on % have been included in  

thearetical. W u e e  plotted i n  figure ll, 'Experimental values of 
f'rm both yawing-flaw and free"0scillation tests axe compared with c 

these theorretioal values i n  figure ll, At lcru l i f t  coefficients  the 
two experimental mthds w e e  very w e l l  In all cases. Same differences 
between the values of CI., obtained by the two llhethods may be attributed 
t o  the unsteady4low conditions which exist cm an oscillating wing.  The 
values of the- -ping in  w w  C+ f r o m  oacilla,tion tests were determined 
by using tha procedure OL" reference 3. This procedure assumes that the 
vmfatim of Cn with 6 is linear over the raage of anrplitudes ussd, 
A t  the high m&es of attack, t e s t s  showed tha t  the variations of Cn 
wit3 $ were nonlinear, even f cr nmR.'1.7 d u e s  of Q, garticulasly far. 
the mept wags. Becanoe of the nonlinearity of the variation of Cn 

9. 



m e  m 8 k b b J  C a 8 i 8 t 9 &  VdueS of \ could not be obtslned at 
them angles by the  oscil lation  teet  procedure. Results of the oscll- 
lat ion test therefore are presented only fo r  the angle-of-attack range 
f m  which the procedure ie applicable. 

In general, fm the low l i f ' koe f f i c i en t  range, the two experl- 
mental mthods agree very well with  theory. As in the  case of C n e e  
maJcm lift, tb vdue of c for the s w e p t f o m  w i n g  becameyffore 
negative; tho- of the Bweptbaok winge more positive; while those f the 
unevept w h g  remined about the same. Thearetical values of aCZ, % 
also were obta3ned by extrapolating  the data of reference 6 to low aspect 
rat ios  and using thearetical values of . Figtrre 12 Wesents a com- 

parison of the valuee of' C obtained by the y&w3r1@low method wfth 
the thearetical  palues. The t h e k e t i c a l  and erperlmental variations af 

wfth % agree rather well at low lift coefficients,  although  the 
erperimentd values are &.gain m e  negative  than the thearetical  values. 
At eoxne modmate lift coefficients a sudden change in the slope &2 

occurs. The lift coefficient. at which  change aP slope occur8 decreases 
as the angle of sweep increases. A t  high lift ooefficiente, the values 
of C for the ewsptforward w h g  became highly poeitive, while those 

f cr the sweptback &gs changed eign and became negative. 
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!The reeulte of' low-scale t e e t e  made i n  yavlng flaw t o  determine the 
yawing derivatives at constant  sideelip of a series of untapered m p t  
w i n g s  having equal chorda in planes nOrmnal to the leading edge and 
appoximately equal areas indicate  the following conclusions: 

1. A t  10lf lk% and moderate mt c w f f i c i e n t 6 ~  the Value8 Of the 
dmrping in yaw determined by the curved-f low msthod axe i n  fair agreement 
xith those  obtained by the free-08cIllatian lpsthod. At hi& lift mef- 
f Talents coneistent results could not be obtatned far the swept xings by 
the o s c i l h t i m  mthd used. 

2. At low lift and moderate lift coefficients the values of the 
m i n g  in yaw became ma-8  negative with increasing lift coefficient and 
were in fair w e e m s n t  wlth simple sweep theory, Near maximum lift coef- 
f ic ient  this derivative became positive forr the sweptback wings and 
highly negattve for the 8weptfarwa;rb wing. 

3. Values a€' the rol l lng moment due to yawlne beceune nuwe positive 
with increasa lift coefficient and were in  fair agreement wfth simple 
sweep theory cmer a range of lift coeffioients that decreased v i t h  
increasing m e p  angle. At high l i f t  coefficients, the values of th ie  



k .  "he lateral fcrrce due t o  yawing -8 amafl in magnitude but ahawed 
trends which were generally in agreemnt with the simple sweep theory. 
N e a r  maximurn Ilft coefficient the tendsncieg shown by this derivative 
were similar t o  those indicated by the damping in yaw. 
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Figure 1. - System of axes used.. Positive values of forces, moments, 
and angles are indicated. 
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Figure 3. - Plan forms of the swept wings tested. 
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. Figure 5.- Variation of lift coefficient with angle of attack for several swept wjngs. 
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Figure 6. - Variation with lateral flight-path curvature of the lateral 
characteristics for a 45' sweptforward wing. 
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Figure 7.- TTariation with lateral flight-path curvature of the lateral 
characteristics for a 0' sweptback wing. 



NACA R M  No. L7109 
* 

Figure 8. - Variation with lateral flight-path curvature of the lateral 
characteristics for  a 45' sweptback wing. 
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Figure 9.- Variation with lateral flight-path curvature of the lateral 
characteristics for a 60° sweptback wing. 
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Figure 10.- Variation of experimental and theoretical  values of 
with lift coefficient for several swept wings. 
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Figure 11.- Variation of experimental and theoretical values of C nr 
with lift coefficient for several swept wings. 
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Figure 12. - Variation of experimental and theoretical values of C zr 
with lift coefficient for  several swept m s .  








